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Disturbances in a two-dimensional jet of R viscous incompressible fluid are examined 
for the case where the jet has a parabolic velocity distribution at  the nozzle mouth. 
Partial differential equations for a finite amplitude disturbance are solved by use of 
the finite-difference approximation, in which case the jet is analogous to that excited 
externally. Numerical calculations for various disturbance amplitudes clarify the 
nonlinearity of the solution. Moreover, the behaviour of the finite disturbance is 
compared with the behaviour of an infinitesimal disturbance determined from a 
linearized stability theory. Streaklines calculated from the finite amplitude solution 
indicate ‘rolling-up ’. The computations are carried out over the range of jet Reynolds 
numbers 500-2000. 

1. Introduction 
As is generally known, a jet is stable if the Reynold9 number Re is sufficiently small. 

For larger Re, the jet becomes unstable, and then excitation by a loudspeaker or a 
vibrating ribbon makes streaklines roll up and vortices appreciable. As Re increases 
still further the flow becomes less and less regular. In other words, the effects of 
turbulence become more and more pronounced. In the case of rolling-up, disturbances 
are small in the vicinity of the nozzle mouth, while disturbances become large, and 
streaklines thus roll up, at  a distance along the jet axis equal to several times the 
nozzle width or diameter D. Such disturbances become random far downstream, and 
the jet experiences transition to turbulence. 

Vortex streets consisting of two-dimensional vortices or axisymmetric vortex rings 
have been studied both experimentally and analytically. In  the course of experimental 
studies, Anderson ( 1  954, 1955, 1956) investigated the relationship between the 
acoustic frequencies and the vortex growth in circular jets emanating from both thin 
and thick orifices. Becker & Massaro (1968) discussed the instability associated with 
axisymmetric jets issuing from a contoured nozzle. Beavers & Wilson (1970) in- 
vestigated the vortex growth and breakup in both two-dimensional and axisymmetric 
jets emanating from slits and orifices with very sharp edges. 

These experiments show the following results. Under the condition that the viscous 
flow fills the whole cross-section of the nozzle, the Strouhal number St is independent 
of Re, and rolling-up apparently occurs within the range 500 < Re < 3000, where Re 
is based on D and the average velocity at  the nozzle mouth. When the boundary-layer 
thickness 6 is small compared with D,  St is proport,ional to the square root of Re, or 
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DIS, and rolling-up occurs at  Re small compared with the former case. In  the case of a 
square-edged thick orifice, St depends on both the diameter and the thickness of the 
orifice. 

In  the course of analytical studies, Rosenhead (1931) approximated a vortex sheet 
by finite elemental vortices and followed the paths of these vortices by calculating the 
velocities which they impose upon one another. Abernathy & Kronauer (1962) 
examined the growth of disturbances in two parallel vortex sheets by the same method 
as Rosenhead (1931). These two papers restricted the vortex pattern to possessing a 
predetermined wavelength. Beavers & Wilson (1970), however, calculated the trans- 
formation of two parallel vortex sheets without such a restriction. These analytical 
studies, which deal with flows of an inviscid incompressible fluid, have indicated that 
vortex sheets roll up. 

We need to investigate the stability of parallel shear flows in order to clarify the 
phenomenon of rolling-up. A linearized stability theory is the first step in the analysis 
of disturbed parallel flows. Lin (1955, p. 27) investigated theoretically the stability 
of plane Poiseuille flow and found the neutral curve, solving the Orr-Sommerfeld 
equation. Michalke (1 965) obtained the solutions for spatially growing disturbances by 
means of' inviscid linearized stability theory and computed the streaklines, using the 
hyperbolic-tangent velocity profile. Mollendorf & Gebhart ( 1973) solved numerically 
the linearized stability equations for symmetric and asymmetric disturbances in a 
round jet. 

The linearized stability theory, however, cannot be valid for disturbances sufficiently 
large to make the streaklines roll up. There are many studies which aim to clarify the 
nonlinearity of such disturbances by means of a nonlinear stability theory based on 
the linear theory. Gill (1962) investigated the stability of an axisymmetric jet and 
considered nonlinear effects on the stability. Watson (1 962) analysed a spatially 
growing disturbance by using a Fourier expansion and obtained a weakly nonlinear 
equation for the disturbance amplitude which is similar to the Landau equation. 
Pekeris & Shkoller (1  969) calculated the shift in the neutral curve as a function of the 
disturbance amplitude by Watson's method. The last two papers dealt with plane 
Poiseuille flow. 

Numerical experiments enable us to solve the finite-difference equations approxi- 
mating the nonlinear differential equations for the disturbed flows. Fromm & Harlow 
(1963) investigated the development of a vortex street behind a square body in a 
viscous incompressible fluid. Zabusky & Deem (197 1) investigatedvortex pairs in a two- 
dimensional flat-plate wake. Roache & Mueller ( 1970) described numerical techniques 
and the solutions for both incompressible and compressible laminar separated flows. 

As for experimental studies of disturbed parallel flows, Sat0 (1960) investigated 
two-dimensional jets, identifying both symmetric and antisymmetric velocity 
fluctuations with respect to the jet axis. Browand (1966) studied the nonlinear mech- 
anism of a two-dimensional free shear layer formed by separation of alaminar boundary 
layer from a rearward-facing step. Miksad ( 1  973) proposed that the nonlinear effects 
on a disturbance in a separated flow can be explained on the basis of the Landau 
equation. Griffin & Votaw (1  972) studied the von KBrmBn vortex streets in wakes of 
vibrating cylinders. 

In  the present paper, the jet of viscous incompressible fluid has a parabolic velocity 
profile at  the nozzle mouth. The basic equations are the partial differential equations 
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ofmass conservation and of motion. These basic equations are reduced to the equations 
for a disturbance superposed on the steady basic flow, which is assumed to be nearly 
parallel. In  the case of an infinitesimal disturbance, the momentum equations for the 
disturbance are linearized. Under the assumption of a nearly parallel basic flow, the 
solution may be determined from the velocity profile at a certain distance X from the 
nozzle mouth. Therefore the disturbance is a type of wave travelling in the direction 
of the jet axis with constant velocity. The homogeneous equations and boundary 
conditions represent an eigenvalue problem, i.e. the Orr-Sommerfeld equation. The 
disturbance is restricted to be temporally periodic and spatially growing. The Strouhal 
number is determined as a function of both Re and X from the shedding frequency 
corresponding to the maximum spatial growth rate with Re and X fixed. As is already 
known, there are two fundamental sets of solutions for an infinitesimal disturbance 
superposed on the symmetric basic flow. One is a set of disturbances symmetric with 
respect to the jet axis, the other a set of antisymmetric disturbances. 

In  the second half of the paper, finite disturbances are dealt with. The basic equa- 
tions are solved by use of a finite-difference approximation and marching in time. The 
flow is initially undisturbed, then a vorticity disturbance at the nozzle mouth begins 
to fluctuate with a constant amplitude and a constant frequency (Xo: non-dimen- 
sionalized) in either a symmetric or an antisymmetric mode. The numerical calcula- 
tions are advanced in time until the disturbance amplitude reaches a nearly constant 
value in the region concerned. The Strouhal number is determined to be identical with 
So, which makes the disturbance fluctuate with a frequency much the same as X, 
everywhere. The solutions for various amplitudes of the excitation enable us to study 
the nonlinearity. Moreover, the solutions are compared with the results of the linear 
analysis and also the data of Sato’s experiments. For flow visualization the streaklines 
are obtained. However, they must be interpreted with caution, as Hama (1962) has 
shown. Therefore the contours of constant vorticity are also shown. 

2. Basic equations 
In a two-dimensional jet, let x denote distance along the jet axis from the nozzle 

mouth, y denote distance normal to the jet axis and u and v denote the components 
of the velocity in the x and y directions respectively. Introducing the stream function 
’P and the vorticity W ,  we reduce the equations of mass conservation and of motion 
to the vorticity transport equation in conservation form: 

where VZ’P = - w (v2 = a2/ax’+ a2/ay2), (2.2) 
(2.3a, b)  

All quantities have been made non-dimensional, the reference length being the nozzle 
width D,  the reference velocity being the average velocity U at the nozzle mouth and 
the reference time being D / U .  The Reynolds number is Re = UD/v, where v is the 
kinematic viscosity. 

The dependent variables u, v, w and Y are each represented as the sum of a variable 
pertinent to the steady basic flow and a variable pertinent to the disturbance. For 
example, 

aTjay = u, a y j a X  = -v. 

w = W B + W A .  (2.4) 
11-2 
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The suffixes B and A are used to denote the basic flow and the disturbance respectively. 
The basic flow satisfies (2.1)-(2.3) by itself. Thus the basic equation for the disturbance 
is obtained from (2.1): 

where v2TA = -@A, (2.6) 

ayAlay = u,, aTAlax = -v,. (2.7a, b )  

In  the present paper, even in the case of a finite disturbance the disturbed flow is 
analysed by using (2.5)-(2.7), which are the equations for a disturbance superposed 
on the steady basic flow. 

It is convenient to introduce the Strouhal number St, which characterizes the 
temporally periodic disturbance, i.e. St is the shedding frequency f non-dimension- 
alized by U/D:  

st =fop. (2.8) 

3. Basic flow 
We first obtain the solution for the basic flow upon which the disturbance is super- 

posed. Using the condition that the basic flow is nearly parallel and assuming a 
vanishing pressure gradient (apBlax = 0 ) ,  we have the equations for a basic flow which 
is symmetric with respect to the jet axis: 

and 

The vorticity is determined approximately from 

with auB/ax omitted. 

the average velocity being taken as unity; the velocity profile is thus given by 

wB = -auBlay, (3.3) 

The basic flow is assumed to have a parabolic velocity profile at the nozzle mouth, 

Moreover, the velocity component in t,he x direction is assumed to vanish at infinity: 

u,=O a t  y = & m .  (3.5) 

Equation (3.1) is parabolic and is solved by use of a finite-difference approximation 
to satisfy the boundary conditions (3.4) and (3.5). The approximation of a nearly 
parallel flow is valid throughout the region concerned except in the vicinity of the 
nozzle mouth (appendix A). 
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FIGURE I .  The relation between the spatial growth rate Ax ( = Ax,) and Au, (Au,/%r = frequency) 
for vanishing temporal growth rate (AT = 0 ) ,  with respect to the basic flow a t  X = 3.0. 
-, symmetric disturbances; ---, antisymmetric disturbances. 

4. Linear solutions 

linear equation 
The assumption of an infinitesimal disturbance enables us to reduce (2.5) to the 

The basic flow quantities are functions of both x and y. The basic flow, however, is 
nearly parallel, i.e. i t  is weakly dependent on x. Therefore the basic flow quantities 
u,, ao,/ax, V, and aws/ay contained in (4.1) may be approximated by their respective 
values at x = X, in which case X is only a parameter. If this is the case, the solutions 
of (4.1) take the form of a wave travelling in the direction of the jet axis: 

= ‘A(y) exp (ax+Pt),  
with a and p complex. The boundary conditions are 

- 
W ~ , U ~ , ~ A , T A + O  as Y+&CO.  (4.3) 

The homogeneous equations and the boundary conditions represent an eigenvalue 
problem, the Om-Sommerfeld equation. For non-vanishing T,, a and /? are the 
eigenvalues and FA is the eigenfunction. In  this paper, the Orr-Sommerfeld equation 
is solved by means of a time-dependent method and the relation between a and p 
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FIGURE 2. The Strouhal number Str vs. Re a t  X = 1.0, 2.0 and 3.0. -, 
symmetric disturbances; - --, antisymmetric disturbances. 

is obtained (appendix B). The time-dependent method is useful for the case of eigen- 
values whose values have never been estimated. 

The eigenvalues a! and /3 are rewritten in terms of real quantities: 

a = A,+iA, /3 = AT-iAuo, (4.4a, b)  

where A ,  denotes the temporal growth rate, A, the spatial growth rate, A/% the 
wavenumber and uo the phase velocity. We denote the A, corresponding to vanishing 
A ,  by Axo. In  the case of vanishing A,, the disturbance is temporally periodic and 
spatially growing. Consequently, for Re and X given we obtain Axo and A as functions 
of AuO. 

As is already known, in the case of infinitesimal disturbances superposed on a basic 
flow symmetric with respect to the jet axis, both symmetric and antisymmekric 
disturbances exist theoretically. From (4.1), (2.6) and (2.7) we can derive two sets of 
equations. One is the set of equations arising when uA, V, and 'r, are odd functions 
of y and uA is an even function of y, associated with the symmetric disturbances. The 
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FIauRE 3. The maximum growth rate Axom v8. Re at X = 1.0, 2.0 and 3.0. 
-, symmetric disturbances; - - -, antisymmetric disturbances. 

other is the set of' equations for even functions w,, v A  and Y, and an odd function uA, 
associated with the antisymmetric disturbances. 

The relation between A,, and Au, is illustrated in figure I, with respect to the 
basic flow at X = 3.0. The Strouhal number StI is assumed to be AuOm/2n, where 
u, corresponds to Axom, the maximum value of Ax, with Re and X fixed. This is the 
method of determining StI for the infinitesimal disturbances. We expect that the 
disturbances corresponding to AxOm are most closely related to the disturbances 
investigated in laboratory experiments. The Strouhal number StI thus determined 
is plotted in figure 2 against Re with X as a parameter; Str increases with increasing 
Re with X fixed, and also with decreasing X with Re fixed. The variation in St', 
however, is not large over the range of Re considered. The magnitudes of StI are in 
reasonable agreement with those obtained experimentally by Sato (1  960), being 
0.345 for the symmetric disturbances and 0.21 for the antisymmetric disturbances. 
The relation between AxOm and Re is shown in figure 3, with X as a parameter; hxom 
increases with increasing Re, while it decreases with increasing X. We can see that the 
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FIGURE 4. Velocity fluctuations lUAl and I@ A J  for infinitesimal disturbances: Re = 1000, X = 3.0. 
(a) Symmetric disturbance, Au, = Au,, = 1.86, Ax, = Axom = 0.649. (b )  Antisymmetric disturb- 
ance, Au, = AuOm = 1.38, A,,, = Axom = 1.040. 
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dependence of hxOm on X is entirely due to the variation in the basic flow with distance 
from the nozzle mouth. For larger Re and smaller X ,  the vorticity gradient of the basic 
flow is larger in the vicinity of y = & +. This is the main reason why hxOm becomes 
larger for larger Re. Figure 3 indicates that the antisymmetric disturbances have 
large growth rates compared with the symmetric disturbances. The velocity fluctua- 
tions IG,] and IEAl are shown in figures 4(a) and ( b )  for the disturbance with the 
maximum growth rate hxo,,&. These will be compared with both the results of the 
nonlinear analysis and Sato's experiments. 

5.  Nonlinear solutions 
The equations (2.5)-(2.7) for finite disturbances are solved by using a finite- 

difference approximation. The parabolic partial differential equation (2.5) for wA is 
solved by means of explicit marching in time. At each time step, the elliptic equation 
(2.6) for Y, is solved iteratively by optimum over-relaxation and the velocity com- 
ponents are determined by use of (2.7). In the mesh system, A denotes a finite difference 
and At a time step. The suffix j designates the time level and the suffixes k and n are 
node indices in the x and y directions respectively. In the present computation, Ax, 
Ay and At are chosen to be 0.1,0.05 and 0.02 respectively. 

With reference to figure 5, in which the boundaries are designated by encircled 
numbers, the boundary conditions are as follows. The condition of no slip is imposed 
on the walls 0 x = 0, 4 < IyI < Yo. Therefore, along these surfaces Y., = 0 and w, = 

- azYApx2. At the nozzle mouth 0, the disturbed vorticity w, is made to fluctuate 
with a fixed amplitude and with a fixed frequency, and U, is assumed to vanish, or 
Y, = 0. The formula for wA is 

wA = K(y) sin (27rrSot). (5.1) 

Since the disturbance vanishes at infinity, the disturbed stream function is given by 
Y, = 0 on the boundary @j (lyl = Yo). The disturbed vorticity wA vanishes on the 
boundary @) (IyI = Yl < Yo), because it vanishes more rapidly than Y, as y+ f m. 
On the downstream boundary @ (x = X o ) ,  the disturbance is assumed to propagate 
with velocity uD ( =  0-5), i.e. 

wA(tfAt,XO,y) = wA(t ,  XO-uDAt,y), (5.2a) 

y~(t-t'At,Xo,Y) = 'r,(t ,Xo-u~At,y).  (5.2b) 

In this problem, the disturbances propagate with a nearly constant velocity of about 
0.5 in the direction of the jet axis. Therefore the boundary condition (5.2) is appropriate 
to this problem. Moreover, this boundary condition is useful for saving computation 
time in solving (2.6). Generally, there is not exact physical justification for both the 
conditions at  the nozzle mouth and the conditions on the downstream boundary. 
The conditions on these boundaries, however, must be specified for solving the basic 
equations. 

The basic finite-difference method used for (2.5)-(2.7) at the interior field points is 
as follows. The velocity components are obtained from the stream-function distribu- 
tion by centred differencing of (2.7). The term V 2 Y A  in (2.6) and the diffusion terms 
and the term awA/ay in (2.5) are expressed in centred-difference form. On the 
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FIGURE 5.  The flow field and the boundaries for obtaining finite 
disturbances; here Yo = 2.5, Yl = 1.5 and X, = 5.0. 

other hand, the term &,/ax in (2.5) is expressed in the modified upwind-difference 
form a w ~ / a x  = g{(j+ l , k , n )  - (j+ 1, k- l ,n)  f (j, k+ l ,n)  - (j, k ,n ) ) /Ax ,  (5 .3)  

where ( j , k , n )  = W-+j,k,n = w ~ ( [ j - l ] A t ,  [ k - l ] A x ,  - Y l + [ n - 1 ] A y ) .  (5.4) 
The upwind-difference method was proposed in Roache & Mueller (1  970). 

follows. 
The steps involved in advancing the configuration from time t to time t + At are as 

( 1 )  At the nozzle mouth, oA for t + At is given by (5 .1 ) .  
(2) On the downstream boundary, wA and Y, for t + At are determined. 
( 3 )  For each mesh point associated with 0, (lyl < YJ, wA for t + A t  is found by 

(4) For each mesh point associated with Y A  (lyl < Yo), 'FA, U, and vA for t + A t  

( 5 )  On the boundary 0, wA for t + At is determined. 
(6) For each mesh point (I yI < Y,), a more accurate W, for t +At  is calculated from 

the values of wA, uA and vA for t and also from the values of uA and V, fort + At obtained 
in step 4. 

( 7 )  More accurate values of YA, u, and V, for t + At are calculated from the W, 

obtained in step 6 .  
The accuracy of the finite-difference approximation is discussed in appendix C. 
The two kinds of external excitation imposed at the nozzle mouth are now specified: 

using the finite-difference approximation to (2.5).  

are calculated from the wA obtainedin step 3. 

(i) for symmetric excitation, 0, is given by (5.1) with 

K(Y) = KO ( - UBO) Y, 

K(Y) = KO ( - UBO), 

(ii) for antispmmetric excitation, 
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where KO is a constant and uBo denotes the value of uB a t  the nozzle mouth. Such 
excitation is analogous to laboratory excitation by a loudspeaker or avibrating ribbon. 
In experiments, however, it  is hard to keep disturbances purely symmetric or purely 
antisymmetric. 

6. Results and discussion 
The flow is initially undisturbed, then at t = 0 the vorticity disturbance at the 

nozzle mouth begins to fluctuate according to (5.5) or (5.6). The disturbance amplitude 
gradually tends to  a constant value at every mesh point as time advances. For sym- 
metric excitation, the variation of u;, the value of uA at x = 3, y = 0, is illustrated in 
figure 6 for the case Re = 1000, So = 0-31. The amplitudes tend to nearly constant 
values at t = 16. The frequency for KO = 0.02 is 0.6 yo higher than the frequency for 
KO = 0.3, but the difference between the t'wo is not appreciable, i.e. the shedding 
frequency is almost independent of the disturbance amplitude when u% is smaller 
than about 0-2. The non-dimensionalized frequency S is determined as a function of 
x from the part of the solution with nearly constant amplitude, within the range of 
KO in which changes in KO have no effect on the frequency. The frequency 8 thus 
determined is shown in figure 7 for the case of symmetric excitation a t  Re = 1000, 
with S at x = 0 coinciding with the respective So, the frequency of excitation. All the 
S's for the various So's are found to converge to 0.31 with increasing x, the distance 
from the nozzle mouth. Consequently, for So = 0.31, S is nearly constant, inde- 
pendent of x. In  this case the disturbance becomes temporally periodic for sufficiently 
large t in the region concerned. In  the nonlinear analysis, the Strouhal number X t F  

is assumed to be the So for which S is constant, i.e. independent of x, and identical 
with So. In  figure 8, the values of StF are plotted against Re. These are in substantial 
agreement with the curves for X = 2 and X = 3 obtained by the linear analysis 
previously described. As is shown below, the nonlinear solution for very small ampli- 
tude obtained by numerical calculation in this paper is in good agreement with the 
linear solution. By reference to the method of determining St', we surmise that the 
dishrbance corresponding to S = StF is more amplified than any other through the 
region from x = 2 to x = 3. This explains the convergence of S shown in figure 7. 
Sat0 (1960) found St = 0.345 for the symmetric disturbances and St = 0.21 for the 
antisymmetric disturbances. Griffin & Votaw ( 1972) experimentally investigated the 
wakes of cylinders and obtained an St of about 0.2 for the antisymmetric disturbances. 
The Strouhal number X t F  agrees reasonably well with the St obtained experimentally 
by Sato (1960), and also with the St obtained by Griffin & Votaw (1972), in spite of 
the difference in the basic flow. 

In  this paper, velocity fluctuations uz and vz are defined by 

P" = &(Prnax-Pm~,) ( P  = UA or vA) 

as functions of position, where PmaX and P,,, denote the maximum and minimum of 
P respectively. We compare the nonlinear solution for very small amplitude with the 
linear solution. Figure 9 (a)  shows uz and v: for the case of symmetric excitation with 
Re = 1000, So = 0-31 and KO = 0-02. The curves in figure 9(a) are in good agreement 
with the curves obtained by the linear analysis in figure 4 (a) except in magnitude. We 
consider the nonlinear effects on the velocity fluctuation profile. In  figure 9(b), us 
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FIGURE 6. Time variation of ui (UA a t  x = 3, y = 0) for the case of symmetric excitation 
with Re = 1000, So = 0.31; here u> for KO = 0.02 has been multiplied by a factor of ten. 
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FIGURE 7. The frequency S of finite disturbances for various values of 
So for the case of symmetric excitation with Re = 1000. 
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FIGURE 8. Comparison between StF and StI .  A, StF, symmetric excitation; 0, StF, antisym- 
metrio excitation; -, St', symmetric disturbances; ---, St', antisymmetric disturbances. 

and v 3  are shown for the case of symmetric excitation with Re = 1000, 5, = 0.31 
and KO = 0.3. The results essentially agree with the experimental results of Sat0 
(1960). The curve of uz in figure 9 (a )  has five maxima, while uz in figure 9 (b )  ha,s no 
maximum in the vicinity of y = f 0.4. Since the y derivative of u, is largest in the 
vicinity of y = 0.5, the nonlinear effects are most distinct there. Figure 9(c) shows 
u: and v 2  for the case of antisymmetric excitation with Re = 1000, 5, = 0.225 and 
KO = 0.015, compared with the results of Sat0 (1960). 

Through use of the first terms of Fourier series, we introduce 

where 

P = (PZ + PZ)*, 

to +s, - ' 

t o  
P, = 25, 1 Pcos(2775,t)dt. 

(6.2) 

( 6 . 3 ~ )  

(6 .3b)  
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FIGURES 9 (a) and ( b ) .  For legend see facing page. 
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FIGURE 9. Velocity fluctuation amplitudes u: and v: for the case Re = 1000, x = 3. (a) Symmetric 
excitation, So = 0.31, KO = 0.02. (b) Symmetric excitation, So = 0-31, KO = 0.3. (c) Antisymmetric 
excitation, So = 0.225, KO = 0.015. A, uz from Sato’s experiment for Re = 4000, x = 5 and 
(b) So = 0.25, (c) So = 0.20. 

As for the nonlinear analysis, the spatial growth rate is assumed to be defined on 
the jet axis in terms of C A  at y = 0: 

A% = a(logc,)/ax. (6.4) 

Let us compare AF, for a very small disturbance with the A,, obtained by the linear 
analysis. In figure 10, A s  is plotted against x for the case of symmetric excitation 
with Re = 1000, So = 0.31 and KO = 0.02; A s  is in good agreement with A,, for 
Au0/2n = 0.31. The velocity fluctuation profiles and A 5  for a very small disturbance 
indicate that the numerical calculation for the nonlinear analysis is fairly accurate. 
We now consider the nonlinear effects on the growth rate A%, obtaining values of 
A s  at x = 3 for various KO’s. In  figure 11, A s  is plotted against 62 for the case of 
symmetric excitation with Re = 1000 and So = 0.31, where u2 denotes uA at x = 3, 
y = 0. We find A 5  to be approximately of the form 

A z  = a i- b(6;)2. 

dCA/dx = G,(a + bC5) .  

(6.5) 

(6-6) 

This relation results in the Landau equation 

Since b is negative according to the results shown in figure 11, the growth rate 
becomes smaller as the disturbance grows. Miksad (1  973) reported similar results for 
an experimental investigation of a separated flow. 

Streaklines are useful for flow visualization. We thus release particles from 
(0, _+ 0.325), (0, _+ 0.375), (0, & 0.425) and (0 ,  & 0.475) at time intervals of 0.6, and 
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FIGURE 10. Comparison between A$ and Axe; Re = 1000. -, A$, symmetric excitation, 
So = 0.31, KO = 0.02; ---, Axe, symmetric disturbances, Au0/2n = 0.31. 

trace their paths. Each streakline links the positions at  any one instant of particles 
which started from the same point at the nozzle mouth. Figure 12(a) shows the 
streaklines for the case of symmetric excitation with Re = 1000 and So = 0.31. The 
space between the streaklines starting from (0,O-475) and (0,0.425), the space between 
the streaklines starting from (0, - 0.475) and (0, - 0.425) and the space between the 
streaklines starting from (0, &- 0.375) and (0, &- 0-325) are shaded. Figure 12(b) shows 
the streaklines and particle paths for the case of antisymmetric excitation with 
Re = 1000 and So = 0.225. The streaklines roll up, while the particle paths are not 
vortical. These results are not contrary to the results of Hama (1962). From the 
streaklines and the velocity fluctuations obtained above, we find that the disturbances 
are nearly symmetric for the case of symmetric excitation and nearly antisymmetric 
for the case of antisymmetric excitation. 

Contours of constant vorticity are shown in figure 13(a) for the case of symmetric 
excitation with Re = 1000 and So = 0.31 and in figure 13(b) for the case of anti- 
symmetric excitation with Re = 1000 and So = 0.225. On comparing figure 13(a) 
with figure 12(a) and figure 13(b) with figure 12(b), we find peaks in the contour 
maps a little downstream of the respective centres of the streakline vortices. The 
contour lines imply that the genuine vortices grow. In  particular, in figure 13 (b) the 
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FIQWRE 11. A$ (circles) vs. 6: for various values of K ,  for the case of symmetric 
excitation with Re = 1000, So = 0.31. ---, A: = a+ b6y .  

KBrmBn vortex street assumes its early form, and the contour lines resemble the 
lines shown in Zabusky & Deem (1971), which dealt with a two-dimensional flat-plate 
wake. 

Let us summarize the results. The finite-difference method used in this paper is 
suitable for the problem of the instability of the two-dimensional jet, and the numerical 
calculations give accurate estimates of the behaviour of the disturbance. The Strouhal 
number hardly depends on the disturbance amplitude. On the other hand, the ampli- 
tude does affect the velocity fluctuation profile and the spatial growth rate, which is 
sufficiently well explained by the Landau equation. The streaklines and the contours 
of constant vorticity indicate growing vortices and ' rolling-up '. 
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X 

FIGURE 12. Streaklines and particle paths (-a-, - x -); Re = 1000. (a) Symmetric excitation, 
So = 0.31, KO = 0.3, t = 17.4. (b)  Antisymmetric excitation, So = 0.225, KO = 0.015,t = 18.0. 
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FIGURE 13. Contours of constant vorticity; Re = 1000. (a)  Symmetric excitation, So = 0.31, 
KO = 0.3, t = 17.4. (b)  Antisymmetric excitation, So = 0.225, KO = 0.015, t = 18.0. 
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Appendix A 
The full momentum equations are 

and 

The equation of mass conservation is 

au,/ax + avB/ay = 0. (A 3) 

Wecalltheregions - * - E <  y <  - & + s a n d & - € <  y <  &+~the‘boundaryregions’, 
where viscous effects are appreciable. We call the region - 4 + 6 < y < 4 - E the ‘inner 
region’. In the inner region, (A 1)  expresses &,/ax to O(l/Re). Even if 8pB/8x does not 
vanish, apB/ax is at  most O(l/Re). From (A3), avB/ay - 1/Re and vB - l/Re. There- 
fore (A 2) shows that aps/ay is O( 1/Re)2. 

The width E restricts uB to be O ( E )  in the boundary regions, and then auB/ax - €1.. 
From (A 3), avB/ay - e/x and vB - e2/x.  Under the condition that E < x,  the diffusion 
term in (A 1 )  is O(l/Re E ) .  Setting E2/x equal to 1/(Re E ) ,  we have 

E - (x/Re)*, (A 4) 

and E/x - (I/xzRe)+. (A 5 )  

In the region x 9 l/Re&, c is negligible compared with x, and the nearly parallel 
approximation is valid there. From (A Z ) ,  ap,/ay - l/(xBe). Since the pressuregradient 
is O( l/Re) in the inner region, 

apB/aX 1/Re + E apB/ay (A 6) 

in the boundary regions. Consequently, apB/ax is O( l/Re) and may be neglected com- 
pared with the other terms in (A I). In the inner region also, neglect of apB/8x causes 
changes in uB which are at most O( 11Re). 

In  the region x 6 l/Re&, the nearly parallel approximation is invalid. Since, however, 
the velocity profile varies by at  most O(l/Re)* through this region, the boundary 
condition (3.4) is adequate for determining the solution in the region x > 1/ReJ. 

Appendix B 

wA, uA, v A  and Y A  are expressed in the form 
In expectation of the existence of a solution taking the form of (4.2), the variables 

PA = PdY, t )  exp (.XI. (B 1) 

Substituting wA, uA, vA andYAin the form (B 1) into (4.1), (2.6) and (2.7), we obtain 
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Equations (B 2)-(B 4) are solved in the region y > 0 under the boundary conditions 

with 

for symmetric disturbances and 

for antisymmetric disturbances. For given a, the parabolic equation (B 2 )  is solved by 
use of a finite-difference approximation by marching in time from arbitrarily chosen 
initial values. At each time step, Y,, ug and ZIa are determined from (B 3), (B 4a)  and 
(B 4b) respectively. We introduce 

Pl(Y, t )  = wogY,)/at. (B 8)  

As the computation time advances, Pl converges to a value independent of both y and 
t ,  which we denote by Po. Many P ' s  exist theoretically, but the solution associated with 
P,,, the ,!I with largest real part, becomes more prominent than the others as time 
advances. Consequently, Po is identical with P,,, i.e. we obtain the eigenvalue which 
has the largest real part. 

Appendix C 
By means of expansions of wA, uA and wug in power series in +At, Ax and A y  around 

t = ( j  - i) At, x = ( k  - 1) Ax, y = - Yl + (n - 1) Ay,  we approximate the disturbance 
terms in (2.5) by finite-difference forms, showing the lowest-order error terms. For 
example, 

awA/ax = +{( j  + 1, k, n )  - ( j  + 1,  k - 1, n )  + ( j ,  k + 1, n )  - ( j ,  k, %)}/Ax 

i a3wA i a3w 1 a3wA 
( A z ) 2 + - A A t A x - - -  (At)2+higher-order terms. (C 1) 

6 ax3 4 at ax2 B a t 2  ax 

In step 3, U ,  and v, are approximated by u ~ ~ , ~ , ~  and ZI,~,,~,~ respectively; for example, 

i au 
2 at u, = uAi, k,  + --A At + higher-order terms. 

Under the conditions that the basic flow is nearly parallel, that At = 0.02, Ax = 0.1 
and Ay = 0.05, and that Re is very Iarge, the severest error term is the largest of 

i ( a ~ , / a t )  (aw,/ay) At, ivug(a2wA/8t ay)  At and @A(a3wA/ay3) (Ay)'. On the other hand, in 
step 6, U ,  and vA are represented by the averages of the values for t = ( j  - 1)  At and 
the values obtained in step 4, having error terms +a2ua/at2)(At)2 and @PvA/at2(At)2, 
respectively. We find that the severest term is the largest of 4u,(83wA/8x3)   AX)^, 

mination of oA in step 6 enables us to remove the error term i(av,/at)  (ao,/ay) At, 
which is significant in the vicinity of y = & i. 

&U,(a7U~/aX3) (AX)', &(aVA/at) (aW, /aY)  At, i ( h A / a t )  (aw,/aX) At, Q u A ( ~ ~ w A / ~ x ~ ) ( A z ) ~ ,  

@A(a30A/ax3) (AX)', ivA(a2wA/at ay)  At and &vA(a3wA/ay3) (AY)'. At least, the redeter- 
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Generally, artificial viscosity is produced by the upwind-difference approximation 

aw,/ax = &{j+ I ,  k , n )  - (j+ 1,  k- 1, n) + (j, k, n) - (j, k- 1, n)}/Ax 

1 a2w 

2 ax2 
+-a Ax i- higher-order terms, (C 3) 

which has the error term $(a2wA/ax2) Ax; i.e. the artificial diffusion term 

+(uB + U J  (a2wA/ax2) AX 

is introduced. By reference to (C l) ,  however, we find that approximation of aw,/ax 
by (5.3) never produces artificial viscosity. This is the reason why we use the modified 
upwind-difference form (5.3). 
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